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A B S T R A C T

Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR)
modelling of air quality is essential for conducting health impacts assessment but more challenging in
mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a
total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO2, NOx, O3,
SO2 and particulate air pollutants PM2.5, PM10) with reference to three different time periods (summertime,
wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring
network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR
modelling method by incorporating wind availability information into LUR modelling based on surface
geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models
by using the “ADDRESS” independent variable selection method and stepwise multiple linear regression (MLR).
Cross validation has been performed for each resultant model. The results show that wind-related variables are
included in most of the resultant models as statistically significant independent variables. Compared with the
traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged
NO2 concentration level by incorporating wind-related variables into LUR model development.

1. Introduction

Urban air quality serves an important function in urban living
quality. People living in cities, especially those in megacities, are facing
severe health threats resulted from urban air pollution issues (Gurjar
et al., 2010; Zhu et al., 2012). As a robust and efficient technique to
estimate air pollution concentration level, land use regression (LUR)
has been widely adopted to map the spatial distribution of outdoor air
pollution (Hoek et al., 2008) and assess the long-term human health
exposure (Ryan and LeMasters, 2007). Since its first application in the
investigation of intra-urban traffic-related air pollution in European
cities (Briggs et al., 1997), LUR models have been developed for many
cities and regions, such as Europe (Beelen et al., 2013; Vienneau et al.,
2009), North America (Hystad et al., 2011; Novotny et al., 2011), Asia
(Kashima et al., 2009) and Australia (Knibbs et al., 2014). Using real
monitored data, LUR estimates the ambient air pollution concentration
at unmonitored locations based on the surrounding land use, popula-
tion and traffic conditions with empirical regression modelling techni-

ques. Compared with other methods of air pollution concentration
modelling, the main advantage of LUR is that the mapping of small-
scale variability is able to provide a more accurate evaluation of the
health risks in unmonitored sites when dealing with the difficulty of
epidemiological studies on the health impacts of human exposure to
outdoor air pollution (Briggs et al., 1997).

The model performance of most LUR cases are reasonably good in
many air pollution exposure studies (Ryan and LeMasters, 2007).
However, its performance in high-density mountainous areas remains
unknown, because so far most LUR case cites/regions have either flat
terrain or relatively low-density urban development or both. In areas
with mountainous topography, the complex surface morphology
strongly perturbs the boundary layer wind field (Finardi et al., 1998;
Raupach and Finnigan, 1997). The high-density building environment
significantly alters the aerodynamic roughness of land surface
(Grimmond, 1998; Kastner-Klein and Rotach, 2004), and consequently,
changes the sub-layer wind flows and the dynamic potential of atmo-
spheric pollutant dispersion (Bottema, 1997). It has been demonstrated
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that wind plays an essential role on the movement, concentration and
dispersion of air pollution (Cogliani, 2001; Pasquill, 1971; Seaman,
2000). In mountainous and high-density Hong Kong, the interaction
between the hilly topography, high-density building morphology and
wind fields are very complex, which makes the wind availability vary
vastly between different locations (Tong et al., 2005) and leads to

significant spatial variations of air pollution concentrations (Wang
et al., 2001). Therefore, it is essential to take wind conditions into
account, while modelling air pollution using LUR.

However, few efforts have been made to take wind information and
meteorological variables into consideration in the LUR modelling of air
pollution concentrations (Arain et al., 2007; Su et al., 2008). Wind

Nomenclature

Symbols and abbreviations

3D Three-dimensional
ADDRESS A Distance Decay REgression Selection Strategy
AICc Akaike information criterion
AQMN Air quality monitoring network
AQMS Air quality monitoring station
AWS Automatic weather station
CO Carbon monoxide
DSM Digital surface model
GIS Geographical information system
H/W The aspect ratio of street canyon
HKEPD Hong Kong Environmental Protection Department
HKO Hong Kong Observatory
LOOCV Leave-one-out cross validation
LUR Land use regression
MM5 National Center for Atmospheric Research Mesoscale

Model, version 5
NO2 Nitrogen dioxide
NOX Nitrogen oxides
O3 Ozone
PlanD Hong Kong Planning Department
PM10 Respirable particulate matter
PM2.5 Fine particulate matter

PRD Pearl River Delta
RMSE Root-mean-square error
SA Source area
SO2 Sulfur dioxide
SVF Sky view factor
VIF Variance inflation factor
z0 Roughness length
α Slope aspect
αr(θ) The angle between the slope aspect α of a certain location

and wind direction θ
β Slope angle
θ,Wdir Wind direction (0–360°)
λF, FAI Frontal area index
λP Building coverage ratio
φ Horizon angle
Ф Azimuth direction
AF The total frontal area of all buildings in an urban lot along

with the a certain wind direction
AP Building footprint area
AT The area of a certain urban lot
CDh Drag coefficient
d The radius of the hemisphere circle for SVF calculation
K Kármán's constant
P(θ) The probability of wind direction θ.
R Correlation coefficient
v Wind speed (m/s)

Fig. 1. The workflow chart of this present study.
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fields simulated by a regional weather forecasting model were used in a
study which used LUR model to predict NO2 concentrations for the links
between health and exposure before (Arain et al., 2007). The study
results show that the use of wind variables can significantly improve the
LUR model performance but also indicate that the complex wind field
on a local scale cannot be fully reproduced by only using the regional
weather forecasting model. An attempt to simulate the wind field
within the urban boundary layer over the complex terrain using the
National Center for Atmospheric Research Mesoscale Model, version 5
(MM5), of Hong Kong has been made with a resolution of 500 m (Tong
et al., 2005). However, the modelling output of the above study only
lasts a short period of three days, therefore, still didn’t provide
sufficient wind information for the LUR modelling in this present study.

Another method of incorporating wind information into air pollu-
tion LUR modelling is to integrate a source area (SA) air dispersion box
model into LUR models. Box model is the simplest air dispersion model
type which approximates the study domain as a defined 3D space with
definite sides, top and bottom, in which pollutants are emitted and
relevant physical processes/chemical reactions can be monitored (RJ
Allen, 1975). In previous studies (Ainslie et al., 2008; Su et al., 2008), a
homogeneous meteorological condition was set for each 3D wedge-
shaped source area in the LUR study area, so the wind information can
be integrated into the LUR modelling. However, it remains unknown if
such simplification of meteorological conditions and uniformity
throughout in the box can well represent the influence of complex
and heterogeneous local terrains on wind conditions. Therefore, for the
LUR development in Hong Kong, other methods should be tested to deal
with the mountainous and high-density city scenario.

In this paper, we estimate and incorporate the fine scale spatial
information of wind availability into LUR modelling to predict air
pollution concentration in a mountainous high-density city scenario by
using Hong Kong as a case. We innovatively adopt the interdisciplinary

knowledge of surface geomorphometry to estimate local wind avail-
ability to improve the LUR model prediction accuracy of air pollution
concentration.

2. Materials and methods

In this present study, local wind conditions were investigated using
the meteorological records during an extended period observed by the
network of 36 automatic weather stations (AWSs) operated by the Hong
Kong Observatory (HKO). With the information of local wind condi-
tions, the fine-scale spatial distribution of wind availability represented
by several geomorphometrical parameters was calculated and mapped
in the geographical information system (GIS) as high-resolution raster
data layers. Data derived from these data layers of wind availability are
integrated into the LUR modelling process as independent variables to
improve the model's performance. Fig. 1 briefly illustrates the workflow
of this present study.

2.1. Study area and context

Hong Kong - a mountainous high-density megacity - is selected as
the study area in this paper. Hong Kong is situated at 22° 150' N, 114°
100' E and has an area of approximately 1100 km2. It has a population
of over seven million, which makes it one of the largest megacities in
Asia and also around the world. The climate of Hong Kong is
subtropical maritime type according to the Koppen Climate
Classification, which features hot and humid summers, and warm
winters of seasonal mean temperature of 23.3 °C and 18.2 °C respec-
tively (HKO, 2015). The annual mean rainfall measures 2398.5 mm.
The annual prevailing wind of Hong Kong is basically easterly with the
annual mean wind speed in high-density urban area measuring
11.0 km/h and in open rural area 23.3 km/h. It should be emphasized

Fig. 2. Study area and locations of the 36 AWSs of HKO and 15 air quality monitoring stations of HKEPD across Hong Kong.
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that Hong Kong experiences very complex wind environments as a
result of the combination of its mountainous topography, high-density
urban morphological characteristics, land and sea breeze circulation,
and the alternation of the subtropical monsoon (Chin et al., 1986; Yan,
2007).

2.2. Data collections

2.2.1. Observed wind information
The 5-year (2011–2015) long-term meteorological records of hourly

wind speed (v, m/s) and direction (Wdir, 0–360°) observed by a
network of 36 AWSs (Fig. 2) were collected from the HKO. The
metadata of these collected wind data were also collected to describe
the location, surroundings and the height of the anemometer of each
AWS. Annual and seasonal probability distributions of v and Wdir of the
location of each AWS were calculated using observed wind data to
provide the basic information of estimating the spatial variation of wind
availability in Hong Kong (Fig. 3).

2.2.2. Long-term monitoring data of air pollution concentrations
Long-term hourly air pollution data of high temporal resolution

recorded in the recent five years (from 2011 to 2015) by the local air
quality monitoring network (AQMN) of the Hong Kong Environmental
Protection Department (HKEPD) were collected to develop the LUR
models for different air pollutants. Data of the hourly averaged
concentrations of gaseous air pollutants CO (carbon monoxide), NO2

(nitrogen dioxide), NOX (nitrogen oxides), O3 (ozone), SO2 (sulfur
dioxide) and particulate air pollutants PM2.5 [particulate matters with

aerodynamic diameter less than or equal to 2.5 µm, also known as fine
particulate matter (FSP)], PM10 [particulate matters with aerodynamic
diameter less than or equal to 10 µm, also known as respirable
particulate matter (RSP)] were collected from the 15 air quality
monitoring stations (AQMSs) of AQMN (Fig. 2). The annual and
seasonal averages (summer time - May to Aug, wintertime - Dec to
Feb) of different air pollutants are calculated with AQMN data. They
are then used as dependent variables to develop the LUR models
(Fig. 4).

2.3. Estimating the spatial distribution of wind availability in Hong Kong

Air pollution concentration is significantly determined by the local
wind availability, which is highly related to the surface topography.
Urban climate research shows that wind condition is closely related to
the physical interactions between the land surface and the atmosphere
(Arnfield, 2003). Wind field is largely determined by the heterogeneous
spatial distribution of the air pressure as a result of the irregular surface
topography and various surface roughness properties (Landsberg,
1981). For example, a mountain usually traps air pollutants on its
leeward side. Wind conditions are also significantly affected by the
urban surface roughness in urban built-up areas (Bottema, 1997).
Therefore, it is essential to determine the surface topographical
characteristics and spatial distribution of the surface roughness to
estimate the wind availability of different localities. Hence, it is
necessary to consider the land surface topographical/morphological
parameters as independent variables in LUR modelling in the case of
Hong Kong to improve the prediction accuracy.

Fig. 3. Annual 16-direction wind roses map of the spatial distribution of wind conditions in Hong Kong based on 5-year hourly wind data from HKO stations.
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Fig. 4. Annual and seasonal average concentration level of air pollution in Hong Kong based on the long-term monitoring data from AQMSs.

Fig. 5. Input DSM of Hong Kong (Tsim Sha Tsui downtown area) and output calculated SVF map.
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By using geomorphometrical methods, land surface parameters
were calculated and used to estimate the openness of the local
topography to the background wind. Geomorphometrical methods are
able to indirectly depict the long-term local wind availability at a
reasonable accuracy and fine spatial resolution without involving
intensive computational resources and massive time consumption
(Böhner and Antonić, 2009). Four land surface topographical/morpho-
logical parameters that have been widely used in topo-climatological
studies – windward/leeward index, sky view factor (SVF), frontal area
index (FAI, λF) and roughness length (z0)— are selected and calculated
at a series of LUR buffers as the independent variables to represent the
wind availability in LUR modelling. The windward/leeward index
reflects the influence of the natural topography on the wind availability
at a relatively large-scale. SVF and FAI are good indicators of the intra-
urban wind condition with respect to the local-scale building morphol-
ogy. z0 is the roughness length that comprehensively depict the surface
aerodynamic properties.

The windward/leeward index is a land surface topographical
parameter that describes the spatial relationship between the land
surface slope aspect and a specific wind direction (Böhner and Antonić,
2009). The angle between the slope aspect α of a certain location and
wind direction θ is αr(θ) which ranges from 0° (fully windward) to 180°
(fully leeward). The wind direction-weighted windward/leeward index
(ranges from 1 - windward positions to −1 - leeward positions) of a
certain location can be calculated with its corresponding wind direction
probability P(θ) from 16 main directions θ:

∑Windward leewardindex α P/ = cos ∙
θ

r θ θ
=1

16

( ) ( )

SVF is a topographical/morphological parameter that describes the
openness of a specific location at land surface to the open sky hemi-
sphere (Watson and Johnson, 1987). SVF ranges from 0 (which
represents a theoretical circumstance that the location is completely
blocked by the surrounding topography) to 1 (which indicates a
complete openness to the sky hemisphere). SVF is usually used to
explain the solar radiation and air temperature variations. Moreover, it
is also one of the most important indicators related to wind availability
and pollution dispersion and other environmental factors (Eliasson
et al., 2006; Rafieian et al., 2014; Ratti and Richens, 1999). It has been
found by two previous LUR studies that the prediction accuracy of
urban air quality improves when SVF is included in LUR modelling

(Eeftens et al., 2013; Tang et al., 2013). With a 2 m-resolution digital
surface model (DSM) of Hong Kong generated from Hong Kong
Planning Department (PlanD) data sources, the SVF were calculated
(Fig. 5) by using the equation proposed by Dozier and Frew (1990):

∫SVF
π

cosβ cos φ sinβ cos α φ sinφ cosφ d= 1
2

[ + ∙ (Ф− )∙(90− − )] Ф
π

0

2
2

where SVF is calculated for each point location of the DSM with slope
aspect α and angle β based on the horizon angles φ in azimuth
directions Ф of the hemisphere circle with the radius d.

Surface roughness is an essential factor that has been widely used in
boundary layer climate research to describe the wind behaviour over
the land surface (Grimmond and Oke, 1999). The roughness properties
of land surface affect the surface drag, turbulence intensity, wind
velocity and vertical wind profile (Landsberg, 1981). It means the wind
availability of a locality is highly dependent on the local natural
topography and urban morphology, because roughness varies in
different areas due to the differences in topographical and morpholo-
gical characteristics (Grimmond and Oke, 1999; Raupach and Finnigan,
1997). It has been confirmed that surface roughness is essential for the
air quality modelling (Barnes et al., 2014; Bottema, 1997). The complex
terrain and high density of Hong Kong mean the city's surface rough-
ness properties vary vastly, and so does the wind environment. The
spatial distribution of air pollution will be affected accordingly.

Surface roughness can be estimated using the Davenport roughness
classification (Wieringa, 2001), through field observation using the
anemometric methods (Grimmond, 1998), or from surface morpho-
metric analysis using geomorphometrical methods (Grimmond and
Oke, 1999). Although the Davenport classification has been widely
adopted to estimate surface roughness for low-density and mid-density
city scenarios, previous research indicates that this method is not
suitable for estimating the spatial distribution of surface roughness in
high-density city scenario (Ng et al., 2011) because high-density urban
areas usually belong to the “chaotic” surface classification with the
surface roughness length value z0> 2. That means no more detailed
classification can be made to estimate the intra-urban variation within
high-density urban areas. Anemometric methods have been adopted to
measure the atmospheric turbulence both in urban areas (Brook, 1972)
and in suburban areas (Duchene-Marullaz, 1975). However, it is not a
practical way to estimate surface roughness due to the need for high

Fig. 6. Demonstration of FAI Calculation using 16 wind directions.
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quality field measurement and the lack of clear optimal methods
(Grimmond, 1998). Therefore, the geomorphometrical method has
become the most popular tool in recent years, and is used in this study
to describe the spatial distribution of surface roughness as independent
variables to be incorporated into LUR models.

The geomorphometrical methods estimate the surface roughness
characteristics by using empirical modelling based on the morpho-
metric characteristics of land surface (Bottema, 1996; Macdonald et al.,
1998; Raupach, 1992). The basic calculation method of z0 was
mentioned by Bottema (1996) for regular building clusters:

⎛
⎝⎜⎜

⎞
⎠⎟⎟z h h λ exp K

C λ
= [ − ∙( ) ] −

0. 5∙ ∙
P

Dh F
0

0.6

where h is building height, λP and λF are the building coverage ratio and
building FAI of a building lot. CDh is drag coefficient (constant of 0.8)
and K is the Kármán's constant (considered as 0.4). The calculation of λP
and λF are shown in following equations:

A A

A A

λ = ( ∑ )/
λ = ( ∑ )/

P i
n

Pi T

F i
n

Fi T

=1

=1

where n is the total number of building in the urban lot (Fig. 6).
Therefore, the complete z0 equation is as follow:

⎪ ⎪

⎪ ⎪⎧⎨⎩
⎡
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⎤
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0.6

=1

In Hong Kong, particularly in some high-density downtown areas,
the building geometry and layout are extremely irregular due to the
mountainous topography. Therefore, the improved calculation method
developed by Gál and Unger (2009) is adopted to deal with the
irregular building geometries and layouts. This method uses the
Voronoi diagram for the partitioning of building lot polygons so that
the relevant roughness parameters can be calculated for each lots
(Fig. 7). The λF of each building lot depends on the wind flow direction.
In this present study, λF was calculated using 16 wind equiangular
directions (Fig. 6). Then, the weighted average of λF was calculated
according to the annual and seasonal wind direction probability
distribution mentioned in Section 2.2.1, so the seasonal variation of
wind availability could be incorporated into the LUR modelling:

∑λ λ P= ∙F
θ

F θ θ
=1

16

( ) ( )

2.4. Independent/dependent variables of LUR modelling

As suggested in many previous LUR studies (Hoek et al., 2008),
independent variables were prepared for LUR modelling according to
the following four classifications: (1) traffic network/volume, (2) urban
land use, (3) population density, (4) geo-location and physical geo-
graphy of monitoring points. As mentioned, four other parameters
related to the wind availability were also prepared as independent
variables to depict the influence of the wind environment on LUR
model performance. This present study calculated 20 parameters using
13 different buffers (14 for SVF) and 8 parameters using nearest
distance analysis for each sampling point to check all potential
independent variables for the LUR models for air pollution of Hong
Kong (Table 1). In total, 269 potential independent variables were
prepared and analysed in this study.

Annual, summertime and wintertime average long-term concentra-
tion of seven air pollutants (CO, NO2, NOX, O3, SO2, PM2.5 and PM10)
were calculated and used as the dependent variables for LUR modelling.
As such there were 21 resultant LUR models produced by this present
study. The reason for separately modelling the air pollution concentra-
tion for different seasons is that the seasonal variation of the meteor-
ological conditions of Hong Kong is considerable. In Hong Kong,
because of the seasonal variation of monsoons, the prevailing synoptic
wind directions are northerly and northeasterly in wintertime, mainly
easterly during spring and autumn seasons, and southerly wind
dominates the summer months (Guo et al., 2007; Sin et al., 2002;
Yan, 2007). Consequently, the overall air pollution concentration level
is significantly affected by the long-distance transportation of pollution
from sources in the Pearl River Delta (PRD) region in mainland China
during the wintertime (Kwok et al., 2010; Yuan et al., 2006), while in
summertime, it is dominated by local emission sources (Lau et al.,
2007). Separately conducting LUR modelling for different seasonal
periods provides a clear estimation of the contribution of local sources,
identifies the local determinants of the spatial distribution of air
pollution in Hong Kong and also helps to evaluate the regional impacts
from surrounding areas of Hong Kong.

Fig. 7. Generated lot polygons for building and calculated annual Wdir probability distribution weighted average λF value.
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2.5. LUR modelling process

2.5.1. Independent variables selection
In this study, instead of manually conducting the exploratory

regression modelling, we adopted the widely used stepwise regression
technique which is an iterative regression modelling method that
automatically selects independent variables by testing statistical sig-
nificance of regression models (Tabachnick and Fidell, 2001). It has
been found that introducing too many independent variables into a
stepwise multiple regression modelling process will cause spurious
regressions and usually leads to over-fitted multiple regression models
(Tu et al., 2005). To avoid this issue, “A Distance Decay REgression
Selection Strategy (ADDRESS)” developed by Su et al. (2009) was
adopted to preliminary filter all independent variables. Firstly, a series
of distance-decay curves were plotted for different buffers using the
correlation coefficient (R) between the dependent variables of concen-
tration of seven air pollutants and each LUR parameter. Then, by
strictly following the independent variable selection mechanism devel-
oped by Su et al. (2009), independent variables at the optimal buffer
sizes for the air pollution concentration are selected as the candidate
independent variables before further regression modelling.

It is known that collinearity among independent variables causes
over-fitting issues and spurious resultant regressions as well (Tu et al.,
2005). Therefore, multivariate statistical analysis is used to examine the
correlations between the independent variables preliminary selected by
using “ADDRESS”. Together with variance inflation factor (VIF), the
results of the multivariate analysis provide a reference to detect hidden
correlations between independent variables in the resultant models to
maintain statistical reliability.

2.5.2. Stepwise regression LUR modelling and model validation
Stepwise regression has been used for selecting independent vari-

ables for a long time and was developed in the form of an automatic
computer program to deal with the complexity of multiple regression
statistical studies (Jennrich, 1977; Miller, 2002, 1984) (Section 1.1,
Supplemental material). In this study, SAS JMP statistical software
package was used in order to find the optimal LUR models as
determined by the minimum Akaike information criterion (AICc)
(Freund et al., 2003; Sall et al., 2012). The adjusted R2 values and
leave-one-out cross validation (LOOCV) root-mean-square error (RMSE)
of generated models were examined to check the model performance
(Section 1.2, Supplemental material). A strict set of criteria based on the
VIF (independent variables with VIF<2) was adopted to screen out
independent variables with significant collinearity to produce the final
models.

3. Results and discussions

3.1. Patterns in distance-decay curves of independent variables

The “ADDRESS” selection mechanism has been described in detail
in other research articles (Su et al., 2009). In our study, a total of 21
groups of distance-decay curves (420 curves in total) were plotted to
portray the average concentrations over the past five years of seven
kinds of air pollutants in three time periods. Each distance-decay curve
group has 20 curves correspondingly depicting the correlation between
the pollution concentrations and the 20 buffer-based parameters listed
in Table 1. An example of distance-decay curve groups is shown in
Fig. 8, which shows the dependent variables of annual average NO2

concentration. High correlations (R> 0.8) can be clearly identified
between the wind-related variables (SVF, FAI and z0) and NO2 level.
Similar results are founded in curves for other pollutants as well,
reflecting the significance of local wind condition on the estimation of
air pollution concentration.

Besides the high correlation between wind-related variables and
pollution concentrations, several other common characteristics are
observed from these distance-decay curves: Firstly, as functions of the
buffer distance, the distance-decay curves for summertime usually have
simpler and clearer trends than the wintertime's ones. Most of
summertime curve contains only one or two peaks, and didn’t change

Table 1
List of all independent variables used in this study for LUR modelling.

Parameters used as
independent variables

Units Analysis
methods

Abbreviation

Traffic Network/Volume

Road network
line
density

Expressways
and trunk
road

km/km2 Buffera EXP

Primary road km/km2 Buffer PRI
Secondary
road

km/km2 Buffer SEC

Tertiary road km/km2 Buffer TER
Ordinary road km/km2 Buffer ORD

Road area ratio (%) %b Buffer RDA

Traffic volume Public
transport
vehicles

Passenger Car
Units (PCUs)

Buffer PTPCU

Private and
government
vehicles

PCUs Buffer PGPCU

Count of bus stops number Buffer BUSST
Distance to marines

ports & routes
km Distance MARINE

Urban Land Use

Land use area Residential m2 Buffer RES
Commercial m2 Buffer COM
Industrial m2 Buffer IND
Government m2 Buffer GOV
Open space m2 Buffer OPN

Population Density
Population density person/km2 Buffer POP

Geo-location and Physical Geography of Monitoring Points
Longitude (Δx to the coordinate

origin of HK1980 Gird)
m Distance LNG.

Latitude (Δy to the coordinate
origin of HK1980 Gird)

m Distance LAT.

Elevation above the Hong Kong
Principal Datum ("mPD")

m Distance ELEV.

Distance to waterfront km Distance WATER
Distance to local power plants m Distance POWER
Distance to city parks km Distance CITYPARK
Distance to country parks km Distance COUNTRYPARK
Greening coverage ratio % Buffer GCR

Wind Availabilityc

Sky view factor (SVF)d [0,1] Point,
Buffer

SVF

Wind effect
(Windwar-
d/leeward
index)

Annual Dimensionless
quantity

Buffer WE_ANN
Summertime WE_SUM
Wintertime WE_WIN

Frontal area
index (FAI,
λF)

Annual Dimensionless
quantity

Buffer FAI_ANN
Summertime FAI_SUM
Wintertime FAI_WIN

Land surface
roughness
length (z0)

Annual m Buffer z0_ANN
Summertime z0_SUM
Wintertime z0_WIN

a A series of LUR buffers that adopted in this present study:
50 m,100 m,200 m,300 m,400 m,500 m,750 m,1000 m,1500 m,2000 m,3000 m,4000 m
and 5000 m;

b Values of all percentage-based variables (%) have been standardized to [0,1] during
LUR model development;

c All variables related to the wind availability are calculated based on the weighted
probability distribution of wind direction;

d Original SVF is a parameter calculated for point locations. Hence, besides mean SVF
in different buffers, point SVF values are also retained as an independent variable
(defined as 0 m buffer, directly use the abbreviation – SVF without showing buffer size).
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between positive and negative. In contrast, wintertime curves are more
complex and irregular. Considering that the LUR modelling in this study
focuses on using local urban database as independent variables, this
observation clearly reflects the seasonal variation of the dominant air
pollution modes caused by the seasonal variation of the monsoon
between summer (local emission dominant) and winter (combination of
both local emission and strong regional impacts from PRD) (Kwok et al.,
2010; Yuan et al., 2006). Secondly, the trends of annual distance-decay
curves for most pollutants are more similar to the summertime distance-

decay curves than the wintertime curves. This indicates the dominance
of local emissions in long-term air pollution concentration levels
although regional emissions do have considerable contribution to
severe air-pollution episodes which usually occur during wintertime
(Fung et al., 2005). Thirdly, many curves have a two-peak trend with
one peak at a smaller buffer (between 50 m and 400 m) and the other at
a much larger buffer (between 2000 m and 5000 m). This finding
implies that the same LUR parameter considerably affects the concen-
tration level at two buffers via different mechanisms on different

Fig. 8. The Distance-Decay Curves of R between all independent variables (at a series of buffers) and the annual averaged NO2 concentration level (please also see Fig. S-1 in the
supplemental material for more illustration).

Table 2
The structure and performance of resultant LUR models include wind availability as independent variables (all independent variables with VIF< 2).

Air Pollutant Time Period Resultant LUR Model Adjusted R2 LOOCV RMSE p-value

CO Annual 45.810+(2.132e−7)(COM5000)+47.628(FAI_ANN0200) 0.844 9.286 0.0016
Summer 69.319+(2.334e−7)(COM5000)−0.730(ELEV.) 0.873 8.052 0.0009
Winter 47.068+102.949(FAI_WIN0200) 0.766 12.010 0.0012

NO2 Annual 103.845–84.914(SVF0100)+(9.733e-6)(PGPCU0750) 0.871 8.655 < 0.0001
Summer 74.109–61.370(SVF0100)+(1.133e-5)(PGPCU0750) 0.843 8.126 < 0.0001
Winter 102.278–90.457(SVF0100)+120.943(RDA0300) 0.916 7.751 < 0.0001

NOX Annual 60.631–66.239(SVF)+15.763(ORD4000)+11.178(z0_ANN0100) 0.769 51.837 0.0004
Summer 308.463+(3.293e−2)(COUNTRYPARK)+19.802(TER1000)−398.601(SVF0100) 0.864 39.023 < 0.0001
Winter 467.642+(2.748e−2)(COUNTRYPARK)−522.487(SVF0100) 0.872 41.986 < 0.0001

O3 Annual 13.292-(2.813e−8)(RES4000)+50.924(SVF0200) 0.835 5.464 < 0.0001
Summer −58.960-(3.610e−3)(COUNTRYPARK)+114.728(SVF1500) 0.874 4.160 < 0.0001
Winter 56.058–25.470(FAI_WIN3000)−4.864(z0_WIN1500) 0.521 9.506 0.0048

SO2 Annual 9.842-(3.392e−3) (MARINE)+6.032(TER2000)+(1.103e−5)(IND1000) 0.887 1.491 < 0.0001
Summer 42.412-(7.785e−5)(POWER)−33.600(WE_SUM0500)+1.686(z0_SUM2000) 0.740 3.280 0.0004
Winter 40.777-(8.107e−2)(ELEV.)-(2.514e−4)(POWER)−17.575(WE_WIN4000) 0.326 3.328 0.0632

PM2.5 Annual 30.222+(7.101e−5)(COM0300)+(1.066e−2)(PTPCU0050) 0.671 2.612 0.0005
Summer 16.059+(9.160e−5)(COM0300)+(4.063e−3)(PTPCU0100) 0.771 2.714 < 0.0001
Winter 47.141–1.015(PRI0400)+1.745(TER1000)-(3.821e-4)(OPN0100) 0.422 3.758 0.0287

PM10 Annual 52.984–9.686(SVF)+(3.703e-2)(PTPCU0050)+4.955(FAI_ANN0200) 0.854 3.544 < 0.0001
Summer 32.933–0.151(ELEV.)+(5.336e-2)(PTPCU0050) 0.895 3.524 < 0.0001
Winter 67.654+1.540(BUSST0050)-(5.416e−4)(OPN0100) 0.634 5.138 0.0016
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climatic scales. The smaller optimal buffer suggests the effect of a local
phenomenon on small-scale air pollution variation, while the larger
optimal buffer possibly reveal a regional impact on large-scale air
pollution distribution. The same pattern also came up in Su et al. (2009)
s′ LUR study. The high |R| at the larger optimal buffer confirms that the
AQMN is appropriate for general air quality monitoring in Hong Kong.
The locations of AQMSs are reasonable for the purpose of monitoring
the long-term air quality of its corresponding areas. However, the peak
in the smaller buffer distance on many LUR parameters decay curves
also reflects the local influence on the long-term air quality monitoring
results. This also implies that the spatial coverage of AQMN should be
further developed in order to catch more detailed information on local
variation of air pollution concentrations.

3.2. Resultant LUR models

Finally, a total of 21 LUR models are developed for seven kinds of
air pollutants (gaseous air pollutants CO, NO2, NOx, O3, SO2 and
particulate air pollutants PM2.5, PM10) with reference to three different
time periods (summertime, wintertime and annual average of hourly
monitoring data). Table 2 shows the 21 resultant LUR models. It is
found that wind availability-related independent variables such as SVF,
FAI are involved in many of these resultant models, which indicates
that wind availability information plays an important role in modelling
air pollution in a mountainous high-density city.

3.2.1. Identifying the dominant impact factors of air quality in Hong Kong
Four types of commonly shared independent variables by resultant

models are clearly identified - traffic-related, geographical location of
monitoring locations, urban land use and wind availability. In Hong
Kong, road transport is the main contributor to CO emissions and is also
accountable for a large proportion of NOx and PM emissions (Wan
et al., 2013). Traffic-related variables include the line density of several
road types, road area ratio, vehicle traffic volumes and number of bus
stops. These largely represent the emission intensity of the aforemen-
tioned air pollutants. The presence of these traffic-related variables in
the resultant models confirms transport is one of the determinants of
several air pollutants in Hong Kong. Locations of monitoring points
prove to provide good estimations of local air pollution as well. The
variables of distance from the monitoring locations to marine ports/

routes and local power plants are included in the models of SO2, which
is consistent with the emission inventory that has identified marine
transport and public electricity generation as two of the determinants of
SO2 emission in Hong Kong (Lau et al., 2007). The variable of distance
to the country park in the NOx models quantitatively depicts the urban-
rural contrast of air quality. Like other cities, land use pattern is also a
key factor in the concentration level and spatial distribution of air
pollution. The spatial pattern of commercial (COM), residential (RES)
and industrial (IND) land use areas directly represent the spatial
distribution air pollutant emissions from human activities, while the
open land use (OPN) areas in Hong Kong are usually vegetation and
open space. It has been proved that vegetation plays an important role
in air pollution reduction in megacities (Yang et al., 2005). The open
land use indicates a much lower urban density which has lower
emission intensity and also more effective pollution dispersion. As to
the wind availability, as expected, wind-related variables also show in
the resultant models as significant independent variables. These wind-
related independent variables include SVF, FAI and z0.

3.2.2. Wind-related variables in the resultant LUR models of air pollutants
Table 2 shows that wind-related variables (SVF, FAI and z0) are

included in 14 of all of the 21 resultant LUR models. SVF measures the
openness to sky which represent the vertical permeability of a certain
locality to the atmosphere. Previous pollution dispersion studies
conclude that the retention time of air pollutants in a street canyon
with aspect ratio (H/W) of 2.0 is doubled and tripled respectively, when
compared with a street canyon with H/W of 1.0 and 0.5 (Liu et al.,
2005), because deep street canyons with high H/W geometrically
introduce a low SVF. As a result of this present study, SVF (point based
SVF value) and SVF0100 (averaged SVF value calculated using the
buffer size of 100 m) shows in all models of NO2 and NOX. The
significance of SVF in LUR modelling of NO2, NOx and PM10 in this
present study has been proven to be highly consistent with some
previous LUR studies (Eeftens et al., 2013; Tang et al., 2013). Increasing
FAI reduces the horizontal permeability to the urban ventilation, and
impedes pollution dispersion as a result. Both the FAI and z0 have been
used in the detection of urban air path to enhance urban air ventilation
(Gál and Sümeghy, 2007; Gál and Unger, 2009). The above findings
imply that the spatial pattern of most air pollutants are complex and
quite heterogeneous under a mountainous and high-density urban

Table 3
The structure and performance of resultant LUR models that only use conventional independent variables (all independent variables with VIF<2).

Air Pollutant Time Period Resultant LUR Model Adjusted R2 LOOCV RMSE p-value

CO Annual 63.085+0.210(ORD0500)+(3.489e−7)(COM5000) 0.774 11.149 0.0048
Summer 69.319+(2.334e−7)(COM5000)−0.730(ELEV.) 0.873 8.052 0.0009
Winter 83.656+1.242(PRI0400)+(2.977e−7)(COM5000) 0.575 16.187 0.0324

NO2 Annual 29.191+(1.915e−5)(PGPCU0750)+(3.416e−7)(COM3000) 0.792 10.990 < 0.0001
Summer 20.148+(1.815e−5)(PGPCU0750)+(2.464e−7)(COM3000) 0.786 9.494 < 0.0001
Winter 15.220+193.179(RDA0300)+(4.716e−7)(COM3000) 0.911 7.769 < 0.0001

NOX Annual 13.294+18.552(ORD4000)+(2.315e−6)(COM3000) 0.753 53.595 0.0002
Summer −27.979+(3.488e−2)(COUNTRYPARK)+ 30.651(TER1000)+(2.227e−6)(COM3000) 0.780 49.667 0.0003
Winter 45.910+(2.937e−2)(COUNTRYPARK)+(3.196e−6)(COM3000) 0.755 59.921 0.0002

O3 Annual 32.602-(2.032e−8)(RES4000)+(2.052e−4)(OPN0300) 0.729 7.000 0.0002
Summer 23.532-(2.775e−3)(COUNTRYPARK)-(1.455e−7)(COM3000)+(5.655e−5)(OPN0500) 0.695 6.463 0.0010
Winter 51.854-(4.401e−8)(RES4000)-(9.974e−4)(COM0100) 0.459 10.110 0.0100

SO2 Annual 9.842-(3.392e−3) (MARINE)+6.032(TER2000)+(1.103e−5)(IND1000) 0.887 1.491 < 0.0001
Summer 9.489+3.815(PRI2000)+(2.080e−5)(IND1000) 0.628 3.920 0.0011
Winter 18.903+(1.190e−4)(POWER)-(1.542e−4)(OPN0200) 0.288 3.423 0.0518

PM2.5 Annual 30.222+(7.101e−5)(COM0300)+(1.066e−2)(PTPCU0050) 0.671 2.612 0.0005
Summer 16.059+(9.160e−5)(COM0300)+(4.063e−3)(PTPCU0100) 0.771 2.714 < 0.0001
Winter 47.141–1.015(PRI0400)+1.745(TER1000)-(3.821e-4)(OPN0100) 0.422 3.758 0.0287

PM10 Annual 47.213+(3.841e−2)(PTPCU0050)+(1.311e−4)(COM0200) 0.808 4.064 < 0.0001
Summer 32.933–0.151(ELEV.)+(5.336e-2)(PTPCU0050) 0.895 3.524 < 0.0001
Winter 67.654+1.540(BUSST0050)-(5.416e−4)(OPN0100) 0.634 5.138 0.0016
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context. The concentration levels of air pollutants (especially CO, NOx

and PM, which are highly related to road transport emission) at a
certain location are very localized and are highly determined by the
wind availability within a small buffer (50–200 m). For example,
FAI0200 (FAI value calculated using the buffer size of 200 m as the
independent variable) was found to be influential to the concentration
level of CO. This implies that ventilation is essential to the dispersion of
traffic-related air pollutants. In contrast, the windward/leeward index
that calculated using the digital elevation model of Hong Kong only
shows in SO2 models (at a much larger buffer size, up to 4000 m). This
indicates the spatial pattern of SO2 has a larger spatial scale than CO,
NOx and PM. This reaffirms that the main sources of SO2 in Hong Kong
are the marine emissions and local electricity generations (Lau et al.,
2007). A distribution map of all marine transportation facilities and
local power plants is shown in the supplemental material (Fig. S-2).

3.2.3. Evaluating the improvement on model performance by incorporating
wind availability into LUR

As described, this study comprehensively incorporates wind infor-
mation into LUR modelling as the independent variables. This approach
has only been adopted in a very small amount of studies. The resultant
models shows that the newly introduced independent variables about
wind availability are highly significant statistically, and has high
prediction power in the resultant LUR models based on multivariate
regression analysis (Tabachnick and Fidell, 2007). To evaluate the
model performance improvement by integrating wind availability
information into LUR modelling as independent variables, LUR models
that only using conventional LUR independent variables are also
established (Table 3).

By comparing these 21 pairs of resultant models (a side-by-side
model comparison table is included in the supplemental material, Table
S-1), it is found that 14 of all of the 21 models have achieved an
averaged increase of 8% in prediction performance when wind avail-
ability-related parameters are added as independent variables into the
LUR modelling process. The maximum increase of almost 20% is found
in the LUR model of annual average concentration level of NO2. Such
improvement in NO2 prediction is useful in controlling local traffic
pollution emissions and related health risk assessments, because NO2 is
mainly emitted from Hong Kong local road transport. In the annual NO2

model, the involved wind availability variable – SVF – measures the
vertical openness and ventilation capacity of building geometry, which
is highly useful and intuitive for the urban planning practice. This is
because SVF is high related to a common urban planning index - H/W.
In other words, LUR models with wind availability variables are not
only useful in air pollution and health risk assessment but also
informative for urban environmental planning and decision making.

It should be emphasized that independent variables concerning
commercial land use become important when all wind availability
variables are excluded from the LUR modelling process. This indicates
that commercial land use may be an alternative indicator in the
modelling air quality of Hong Kong. The commercial land prices are
extremely high in Hong Kong so developers tend to fill up the limited
site area with tall buildings to recover the operating costs.
Consequently, correlations between commercial land use and building
density are high. Commercial land use also attracts a large number of
visitors and consumers which leads to more intensive traffic flows,
denser road networks, and an increased number of traffic facilities
within or around these sites. The multivariate analysis conducted
between all independent variables indicates high correlations between
commercial land use (COM5000) and road transport (PRI5000 with R2

=0.82, BUSST5000 with R2 =0.86) and also urban surface geomor-
phometry (FAI5000 with R2 =0.58).

3.3. Limitations and future works

This present study models air quality of Hong Kong by using

historical monitoring data from the existing air pollution monitoring
network operated by local environmental protection department as
dependent variables. Although the data used in this study is a 5-year
long-term dataset with hourly-based high temporal resolution, the
number of monitoring locations is quite limited (only 15) compared
with many previous LUR studies (usually more than 20 monitoring
locations) (Hoek et al., 2008) due to the limited spatial coverage of the
monitoring network. The concern is that, the complex topography and
heterogeneous urban development in Hong Kong make the conditions
of air quality vary significantly among different locations, while many
high-density and heavily trafficked areas in Hong Kong are not
monitored by AQMN. Moreover, most of the general/roadside AQMSs
are located in relatively flat regions. This is because almost all the
densely-populated built-up areas of Hong Kong are in those flat regions
at a relatively lower elevation. It is possible that the air quality
estimation in those complex mountains (usually at a higher elevation)
is less accurate than the estimation of those densely-populated flat
areas. The lack of monitoring data is still a limitation of getting a good
estimation in those complex mountains of Hong Kong. As already
mentioned in Section 3.1, there is a long-term need for more AQMSs to
fill existing monitoring gaps. To compensate this limitation in the short-
term for the improvement of LUR modelling, more temporary sampling
locations must be carefully selected and monitored in future works to
further provide sufficient spatial information and a larger dependent
variable dataset.

4. Conclusion

Estimating ambient air pollution concentration is essential to urban
planning, policy decision-making and environmental management. On
the basis of the resultant LUR models with the identified decisive
variables on the concentration level of air pollutants, our findings have
clear implications for urban planners, decision makers and public
health officials. More importantly, there is a need to incorporate
wind-related information into the LUR models that estimate the air
quality condition for high-density cities with hilly topography. With
reference to the quantitative correlation indicated by these resultant
models, planners can work to improve urban air quality by enhancing
wind availability through strategies such as reducing the FAI by
controlling the building height limits and ground coverage, and
decreasing the H/W ratio of urban street canyons. The existing local
wind environment should be carefully considered before assigning land
use type, making site selection and development plan. To be more
specific, high-density or high-emission projects should be avoided at a
location with low wind availability. For example, an industrial project
should not be placed in the leeward side of a mountain, so that the
pollution dispersion will not be hampered by insufficient wind.

The above air quality improvement strategies must be supplemented
with strategies that identify and protect the more vulnerable commu-
nities (Chau et al., 2002; Ko et al., 2007). It is necessary to combine the
LUR results with local public health assessment. Moreover, it should be
emphasized that above environmental planning strategies definitely
contribute more than just improve air quality. Enhancing the wind
availability by implementing above the environmental planning strate-
gies will also reduce the health risks from “heat waves”. This is
particularly important to high-density cities like Hong Kong, because
the high-density built environment makes it more vulnerable to the
extreme weather condition. It has been proven the correlation between
hot weather and health impacts are considerable (Chan et al., 2012;
Yan, 2000). Improving the wind environment will also improve Hong
Kong's resistance against extreme weather condition by enhancing
thermal condition (Ng et al., 2011).

The linkage between urban air quality and urban planning is strong
(Eliasson, 2000; Marquez and Smith, 1999). Essentially, the surface
topography and aerodynamic properties are necessary components in
urban planning, decision making and urban design. Therefore, with the
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increasing severity of air pollution related environmental issues, urban
planning and design strategies are playing an increasingly important
role in reducing health risks and vulnerability, building resilience and
promoting living environmental quality.
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